BISTRO: An Efficient Relaxation-Based Method for Contextual Bandits

نویسندگان

  • Alexander Rakhlin
  • Karthik Sridharan
چکیده

We present efficient algorithms for the problem of contextual bandits with i.i.d. covariates, an arbitrary sequence of rewards, and an arbitrary class of policies. Our algorithm BISTRO requires d calls to the empirical risk minimization (ERM) oracle per round, where d is the number of actions. The method uses unlabeled data to make the problem computationally simple. When the ERM problem itself is computationally hard, we extend the approach by employing multiplicative approximation algorithms for the ERM. The integrality gap of the relaxation only enters in the regret bound rather than the benchmark. Finally, we show that the adversarial version of the contextual bandit problem is learnable (and efficient) whenever the fullinformation supervised online learning problem has a non-trivial regret guarantee (and efficient).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Monte Carlo Bandits

In this paper we propose a flexible and efficient framework for handling multi-armed bandits, combining sequential Monte Carlo algorithms with hierarchical Bayesian modeling techniques. The framework naturally encompasses restless bandits, contextual bandits, and other bandit variants under a single inferential model. Despite the model’s generality, we propose efficient Monte Carlo algorithms t...

متن کامل

A Survey on Contextual Multi-armed Bandits

4 Stochastic Contextual Bandits 6 4.1 Stochastic Contextual Bandits with Linear Realizability Assumption . . . . 6 4.1.1 LinUCB/SupLinUCB . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.2 LinREL/SupLinREL . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1.3 CofineUCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.1.4 Thompson Sampling with Linear Payoffs...

متن کامل

Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits

We give an oracle-based algorithm for the adversarial contextual bandit problem, where either contexts are drawn i.i.d. or the sequence of contexts is known a priori, but where the losses are picked adversarially. Our algorithm is computationally efficient, assuming access to an offline optimization oracle, and enjoys a regret of order O((KT ) 2 3 (logN) 1 3 ), where K is the number of actions,...

متن کامل

Open Problem: First-Order Regret Bounds for Contextual Bandits

We describe two open problems related to first order regret bounds for contextual bandits. The first asks for an algorithm with a regret bound of Õ( √ L?K lnN) where there areK actions,N policies, andL? is the cumulative loss of the best policy. The second asks for an optimization-oracle-efficient algorithm with regret Õ(L ? poly(K, ln(N/δ))). We describe some positive results, such as an ineff...

متن کامل

CBRAP: Contextual Bandits with RAndom Projection

Contextual bandits with linear payoffs, which are also known as linear bandits, provide a powerful alternative for solving practical problems of sequential decisions, e.g., online advertisements. In the era of big data, contextual data usually tend to be high-dimensional, which leads to new challenges for traditional linear bandits mostly designed for the setting of low-dimensional contextual d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016